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Electron rest-frame internal canonical coordinates are reobtained by the free- 
particle Foldy-Wouthuysen transformation: SchrSdinger "microscopic momen- 
tum", Barut-Bracken "microscopic coordinate", and the rest Hamiltonian, which 
describe Zitterbewegung in this frame. S0(4, 1) Snyder space-time invariant 
quantization is considered in order to construct a dynamical group for Zitter- 
bewegung. The electron's internal structure appears associated with its second- 
order self-energy process and governed by the 15-parameter dynamical group 
S0(5, 1). This is a generalization of Barut-Bracken symmetry which describes 
Zitterbewegung as generated by an algebra of the rotation group $0(5). This 
noncompact symmetry $0(5, 1) permits a natural interpretation for the operators 
of its algebra and introduces a generalization to higher-dimensional fermionic 
representations. 

1. I N T R O D U C T I O N  

Ear l ie r  works  (Saavedra  and  Utreras ,  1981; T a l u k d a r  and  Niyagi ,  
1982; Saavedra ,  1981) have s tud ied  a poss ib le  genera l i za t ion  of  q u a n t u m  
mechan ics  to high energies.  The new results  are r equ i red  to be  reduc ib le  
to the  k n o w n  ones  in the  low-energy  limit.  

These  s tudies  use a one d imens iona l  m o d e l  in which  the canon ica l  
c o m m u t a t o r  [q, p ]  is genera l ized  to high energies  by  

[q, p] = ih + i ( l / c ) H  ~- i( l /  c ) H  (1) 

where  c is the  veloci ty  o f  l ight,  H is the  sys tem H a mi l t on i a n ,  and  1 is a 
cons tan t  wi th  d imens ion  length. Equa t ion  (1) impl ies  a new uncer t a in ty  
re la t ion  

> l  
AqAp _-~ cE, E = (c2p2+ m2c4) 1/2 (2) 
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which introduces an interpretation for the parameter h a particle cannot 
be localized better than (Aq)min = 1/2. 

We observe that relation (2) is found also in Dirac electron Zitter- 
bewegung (Saavedra, 1981; Barut and Bracken, 1981, Schr6dinger, 1930) 
when this movement is studied in the center of  momentum (p = 0) reference 
frame. 

This suggests defining internal coordinates for the electron with the 
corresponding commutation relations obtained in such a way as to satisfy 
the uncertainty relation (2). 

Barut and Bracken (1981) have introduced a global scheme that permits 
studying Zitterbewegung dynamics where the internal coordinates defined 
for the electron satisfy the algebra of the SO(5) rotation group. 

The objective of our present work is to generalize this result showing 
that it is possible to define in a natural way canonical coordinates for 
Zitterbewegung as generators of  a more general global symmetry, governed 
by the dynamical group SO(5, 1) (six-dimensional Lorentz group). 

2. ELECTRON'S  INTERNAL COORDINATES 

Our first objective is to determine the internal dynamical variables (for 
the electron) that arise from the study of the nonrelativistic limit of  Dirac 
theory. The well-known method of Foldy and Wouthuysen (1950) (FW) 
determines this limit to any order in v~ c. The FW transformation is defined 
by means of the operator 

=: e) 

with F t F  = I, where H D  = COt �9 p + flmc 2 is the Dirac Hamiltonian. 
We obtain 

HEW = FHDF* = Eft, E = (mc2+ c2p2) 1/2 (4a) 

If  x is the electron position operator in the Dirac representation, then 

ihc ihc f i e "  hc 2 ~ x p  
XFW = F x F *  = x - ~ -  riOt 4 PP (4b) 

2 E p ( E + m c  2) 2E  ( E + r n c  2) 

In the Dirac representation the particle's instantaneous velocity is given by 

i 
v = ~ [HD, x] = ca  (4C) 

Then 
C 2 

VFW = FcotF* = ~ --~ p + cot 
cot �9 p c2p 

( m c 2 + E )  E 
(4d) 
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Now we study the nonrelativistic limit of  equations (4). To order v~ c 

we have 

HFW ----- mc2/3 
ih h 

XFw--~ X + t~X = X --~-~cmc/30t 4m2e2~X p (5) 

Vvw=V+ 6v =/3  p +  c a  
m 

The plane wave solutions in the FW representation can be written 

,v*+= 0, ,I,*+= 1, ,I,*_= 0, ,I,t= 

1 

(6) 

In the nonrelativistic limit we define the electron momentum in the FW 
representation as 

PFW = mVFw = / 3 p +  mcot (7) 

This momentum consists of  two terms:/3p proportional  to the usual momen-  
tum and rneot which is an operator whose mean value is zero in states (6). 
Thus [when q~ is any one of the spinors (6)] we have 

(pFw) = ( ~ ,  p ~ w ~ )  = •  (8) 

as it should be. 
I f  we put x = 0 and p = 0 (center of  momentum reference frame) we 

obtain 

H =: HFW = mc2/3 
X=: Xvw = - i ( h / m c ) / 3 o t  (9) 

P =: Pvw = inca 

These same operators have been found from other considerations by other 
authors (Barut and Bracken, 1981; Schr~dinger, 1930). In our case these 
quantities appear  systematically as internal canonical coordinates for the 
electron. X and P are interpreted as the "microscopic position" (Barut and 
Bracken, 1981) and "microscopic momentum"  (Schr6dinger, 1930) of  the 
electron, respectively. 

The proof  is straightforward that the operators (9) together with the 
spin components  Sk = ( h / 4 i ) ( a X a ) k  form an algebra of  the five-dimensional 
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rotation group SO(5) (Barut and Bracken, 1981) (BB algebra): 

[x,, PA = -~ar  

[x~, s j]  = it~e~kXk, 

[ P,, Sj] = ih~o~Pk, 

[ X~, fl ] = i( fi/m2c2)p,, 

[/3, sj]  = o 

Bruce and Minning 

[ Xi, X i] = i( h / m2 C2)eijkSk 

[ Pi, Pj] = i( 4rn2 c2/ h )eqkSk 

[ P~, fl ] = - i (  4m2 c2/ h )Xi 

[S,, S A = i h ~ k &  

(lO) 

We point out that the first commutator of (10) can be written in the 
form (Saavedra, 1981) 

[Xi, Pj] = - i 3 ~ ( l / c ) H  (11) 

where l = h/mc is the electron Compton wavelength. Equation (11) implies 
the same uncertainty relations (2). 

3. Q U A N T I Z E D  SPACE-TIME 

H. S. Snyder (1947) developed a theory that shows some commutation 
relations formally equal to those obtained in (10) for Zitterbewegung. He 
showed that Lorentz invariance does not require that a four-dimensional 
space-time be continuous. He demonstrated the existence of a discrete 
Lorentz-invariant space-time for which one must introduce a natural unit 
of length: Snyder considers the four-dimensional homogeneous hyperboloid 

_ _ . 1 2  2 2 2 2 ~/o- .11-.12- ~3-.1~ (12) 

where the ,/'s are real coordinates of a four-dimensional space of constant 
curvature (five projective coordinates). 

He defines the generalized space-time coordinate operators in addition 
to the generators of the ordinary Lorentz algebra as 

Xk = ia "140.1k *1k 

Xo = ia .1'* 0.1o + "0o 
(13) 

Mk = ih ( *1~ O~k + *1k O-~oo) 
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where a is a constant with dimension length and i, j, k take the values 1, 
2, 3 (cyclic). 

The energy-momentum operators can be defined 

p~=(h /a ) ( r l , /~?4) ,  /x =0,  1,2,3 (14) 

The operators (13) and (14) close under commutation to form an algebra 
(S algebra) of the inhomogeneous five-dimensional Lorentz group 
I S 0 ( 4 ,  1). 

It can be shown that each operator Xk possesses a discrete spectrum 
with values ma where m is an integer. The operator Xo has a continuous 
spectrum that extends from minus infinity to plus infinity: As can be seen 
in the definition (13), these operators will have an invariant spectrum only 
if *74 is Lorentz invariant. This last condition is essential if we want the 
quadratic form (12) to be invariant. 

The S algebra contains a total of 45 commutators. In particular we have 

[X,, X~] = i (a2/h)eokL k 
(15) 

[Xi, Lj] = iheijkXk 

closely similar to the corresponding commutators (10) if we consider Lk 
(Snyder angular momentum) to be the analogue of Sk (electron spin) and 
a = ti/inc. 

However this result seems incomplete for the following reasons: 
(a) Snyder postulates a priori an invariant coordinate ~74 without any 

specific physical reason. 
(b) The S algebra is unable to reproduce the rest of the commutators 

(10). 
(c) The Snyder algebra does not fulfill the Born reciprocity principle 

(Born, 1938) that establishes that the quantum canonical equations of 
movement should be invariant under the (canonical) transformation X ~  p, 
p ~  - X  (reciprocity transfomation). 

Our program for the rest of this paper will be as follows: 
(a) Introduce Snyder quantization as a consequence of quantum elec- 

trodynamics. 
(b) Modify the theory so that it be invariant under the Born reciprocity 

transformation and obtain the equations of motion (10) for Zitterbewegung 
as part of a more general global symmetry. 

(c) Show some fundamental properties of this new global symmetry. 

4. FREE-ELECTRON MOTION EQUATIONS 

Let us consider the motion of a free electron with 4-momentum p~ 
(/z = 0, 1, 2, 3). 
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We can form the invariant 

p.p~" = &, , ,p"p  ~' = m 2  c 2 

where m is the electron mass and 

(16) 

goo = - g l  1 = - g 2 2  = - g 3 3  = 1 (17) 

We consider the second-order self-energy process that corresponds to the 
virtual emission and reabsorption of a photon by the electron. (See Figure 
1.) Of  course, this process is the lowest-order interaction of  the electron 
with its own quantized electromagnetic field. 

The modified 4-momentum Pc = ~  + k s  (Figure 1) now satisfies the 
condition 

p ~ p ~  = g . ~ p " p  ~ = m 2 c  2 + 2 h (~6oko - ~ " k) (18a) 

Reordering terms we have 

2 2 2 _ p E _ 2 h ( ~ o k o _ k  . ~ )  m 2 c  2 PO - - P l  - -P2  = (18b) 

This last equation can be written in the form 

m2ou - ~m 2 = m 2 (18c) 

where mob is interpreted to be the " o b s e r v a b l e ' m a s s ,  m the "bare"  mass, 
and 8 m  2 =  2h( / /oko -k" /~ ) ->  0 is the correction that must be added to m 2 

so as to get 2 mob. 

Thus p "  now fulfills the condition 

2 2 (18d) p . p "  = mobC 

For the electron, from (18b) it is possible to define a new Lorentz- 
invariant unobservable momentum coordinate P4 by the equation 

P4 = =t=[2 h (~6oko - 1~" k)] ' /2 (19) 

Fig. I. 

k la 

x x b 
a p~ 

Electron self-energy diagram. X~ and Xb should be considered to be any space-time 
points. 
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in such a way  that  

2 2 2 2 2 2 m 2 c  2 
Po -- P I -- P2 -- P3 -- P4 = P = ( 2 0 )  

This quadrat ic  form corresponds to a 4-hyperboloid  Ha embedded  in a 
five-dimensional space Rs. Following Snyder  [equat ions (13)] we define 
the infinitesimal generators  of  the homogeneous  t ransformat ion group 
S 0 ( 4 ,  1) that  leaves (20) invariant 2 

" -  P4 - P k  
p 

.h  0 0 
X o = - - ' p ( P 4 ~ p o - ~ P O ~ p 4 )  

(21) 
a,[ o o \ 

Lk = M~ = t P.i-~pi - Pi -~pj ) 

M k = Mko = ih Pk-~oPo + PO 

These operators  satisfy 

[ M,., . ,M6,~ ] = - ih (g.6M,. ,~.-  g,,~M~.~ + g ~ M 4 , .  - g . , . M e . )  

[M.v,  Po] = i h ( g ~ p .  - g.~p~) 

[ M.~ ,  X, .]  = ih(g;,,~X. - g~,~X~) (22) 

[M.~, P41 = 0, [p. ,p, .]  = 0  

h h 
= " -  [X . ,  Xv] = i -  M.~ IX,., iv.] ~p p., p 

These are the commuta t ion  relations o f  the inhomogeneous  five-dimensional 
Lorentz group.  As in the case o f  Snyder, these equations are not  invariant 
under  the reciprocity t ransformat ion X .  + p. ,  p .  ~ - X . .  

N o w  we observe more  carefully the form that the electron spatial 
coordinates  take in (21). Xk  consists of  two terms: one propor t ional  to the 
ordinary coordinate  ih(O/Opk) and the other  propor t ional  to a spatial coor- 
dinate x4 = ih(O/Op4) according to the quadrat ic  form (20); With this it is 
possible to define a quadrat ic  invariant form similar to (20) but  now in the 
electron spatial coordinates.  That  is, we can define the hyperbolo id  H4 in Rs: 

2 2 2 2 2_  r 2 (23) 
X o - -  X 1 - -  X 2 - -  X3  - -  X 4 - -  

where x4 is a Lorentz invariant and r is a constant  with dimension length. 

ZNote that X o in (13) and X o defined by (21) have opposite signs. 
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Consequently we can construct the generators of the homogeneous invari- 
ance group of (23): 

.h  0 = x 0 

o) 
r \ Ox4 ~Xo 

(24) 

L k = M U = ih ~ "JOx, ' O x J  

Mk = 3/Iko = ih Xk + xo 

where now P~ (tx = O, 1, 2, 3) is the generalized quantized 4-momentum 
and, for simplicity, we have used the same letters Lk and Mk as in (21) to 
designate the angular momentum operators and the "boosts" of the algebra, 
respectively. It is easy to verify that (22) are invariant interchanging 
P.<-+-X~, x,~-~p~, and p<-*r. 

Schemes (21) and (24) describe the same particle. However they are 
not compatible. For example x~, and X,~ fulfill distinct commutation rela- 
tions. Besides, neither scheme satisfies the Born reciprocity condition. 

In order to solve these difficulties, it is most appropriate to think of 
X~ and P,  as generators of the same unique algebra. This can be done by 
means of expansion (Gilmore, 1974) of versions (21) and (24) of the (22) 
I S 0 ( 4 ,  1) algebra into a homogeneous algebra of S 0 ( 5 ,  1) (six-dimensional 
Lorentz group): 

IS0(4, 1) - - ~  
(space-quantized) . 

~ S0(5, 1) (momentum and space (25) 
quantized) 

IS0(4, 1) 
(momentum-quantized) 

The generators of this algebra are then X~,, P~,, Lk, Mk, and H, where H is 
the Hermitian operator that we must add to complete an algebra (of 15 
parameters) of S 0 ( 5 ,  1). The possibility of generalizing the S algebra to a 
(no-compact) algebra of S 0 ( 5 ,  1) was originally proposed by C. N. Yang 
(1947) in a comment made by him on a paper by Snyder. 

The generators of this new global algebra (Z algebra) now act upon 
a universe of abstract coordinates that can be neither x space nor p space. 
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This new Lorentz-invariant universe can be represented by coordinates ~,~ ; 
a = 0 , . . . ,  5 by means of the hyperboloid/-/5 in R6: 

5 

%2_ 2 u ] = 9  2 (26) 
a = l  

where 1'4 and u5 are Lorentz-invariant coordinates and ~ is the radius of 
curvature of this universe. 

Then the generators of the Z algebra can be written in the form 

where 

x.=(hrl~)Z4,~, P. :(~pl,.)z~ 

H = (he /~ )Z54  

(27) 

(28) 
Zo~ = i(~,oO~ + U~Oo), a, b = 1 , . . . ,  5 

u = r p  and e is a quantity with the dimensions of  energy. This form of 
writing the Z-algebra operators permits reobtaining, by contraction of 
S 0 ( 5 ,  1), the original I S 0 ( 4 ,  1) operators in two possible versions (21) and 
(24) (us = ~ ~ rp, r--> oo and P 4  = / ' '  = rp, p --> o0, respectively). 

The operators (27) satisfy the invariant algebra 

[ M ~ ,  Me,,, ] = - ih(g ,6M~,~ - g~c~M,~ + g~JVl6~ - g ~ M 6 ~  

[ M ~ ,  P~] : i h ( g ~ P .  - g .~P~)  

[ M ~ ,  X~] = ih(g~o.X. - g ~ X ~ )  

[M,~, HI  = 0 (29) 

[X~, H]  = ih(e /p2)p~,  [P~, H ]  = i h ( e / r Z ) X ~  

[ X . ,  X~] = - i ( h / p 2 ) M ~ ,  [P~, p~] = - i ( h / r 2 ) M . ~  

[X~, P~] = i g . ~ ( h / e ) H  

5. CONNECTION WITH ELECTRON z I T r E R B E W E G U N G - -  
FINAL COMMENTS 

We observe that the BB-SO(5) algebra (10) is contained in the SO(5,  1) 
Z algebra (29) if we substitute v = h /2 ,  r = h /2mc ,  p = mc, and e = rnc 2. 
This can be seen more clearly if we represent the Z algebra by means of 
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the 4 • y matrices. The corresponding operators then are 3 

Xo = i( h /2mc)ys ,  

Po = mcyo y5, 

Lk = i( h/2)yjy, ,  

H = mcZyo 

xj  = - ( ~ / 2 m c ) v j  

Pj = imcyo D 

M k  = ( h / 2 ) y k T 5  (30) 

where Lk corresponds to the electron spin Sk and H is its rest energy. 
This representation of the Z algebra then corresponds to a generaliz- 

ation of the algebra of BB-SO(5) c Z - S O ( 5 ,  1). 
The above shows that Zitterbewegung is a consequence of the second- 

order self-energy process. This permits the construction of an invariant 
global algebra and the deduction of the commutation relations that general- 
ize the BB algebra. 

We observe that X .  and P.  in the Z algebra (29) satisfy harmonic 
oscilator equations: 

. ~  + to2X~ = 0 
(31) 

  +to2P  =0 

where to =2mc2 /h  and . ~  = ( i / h ) [ H ,  X~]. 
Defining the raising and lowering operators 

* _ (m to /2h ) ' / 2X .  - i (mhto /2 ) - t /gp .  a l x -  

a~. = ( m / 2 h  )l/2x~. + i(mhto/2)- l /2p~ (32) 

we can show that 

g,.~H = ( hw/2)[a~,  a~] (33) 

The spectrum of the Hamiltonian H can be found using standard techniques. 
One finds that this energy spectrum consists of two states +rnc 2, and that 
the ladder operators (32) change the sign of the energy. In a hole theory 
this shows that the Dirac equation describes a composite system consisting 
of two states: particle and antiparticle (Saavedra, 1981). One also shows 
that the corresponding operators N .  = a~,a,** (here we do not sum over/z) 
have only two eigenvalues n = 1, 0 (fermionic oscillator) corresponding to 
the particle and antiparticle, respectively. 

3We use  the  Pau l i  met r ic :  y~ a re  H e r m i t i a n  ma t r i ces :  3'0 = fl, Yk = i f lOgk,  'Y5 = 'Y0'Yl T2'Y3, a n d  

~,~,~ + ~:,~ = 2 ~ .  
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The generalization to higher dimensions follows immediately by means 
of the irreducible unitary representations of S0(5, 1) in (28) with the 
resulting associated energy spectrum (mass spectrum) for H. 
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